

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE

Vicerrectorado de Docencia

PROGRAMA ANALÍTICO

1. DATOS INFORMATIVOS

DEPARTAMENTO:		ÁREA DE CONOCIMIENTO:			
CIENCIAS EXACTAS		QUIMICA			
NOMBRE DE LA ASIGNATURA:		PERIODO ACADÉMICO:			
QUIMICA		PREGRADO S-II OCT18-FEB19			
CÓDIGO:		No. CREDITOS:	NIVEL:		
MVU60		6	PREGRADO		
FECHA ELABORACIÓN:	EJE DE FORMACIÓN	HORAS / SEMANA			
	BÁSICA	TEÓRICAS:	PRÁCTICAS/LABORATORIO		
23/04/2018	DASICA	4	2		

DESCRIPCIÓN DE LA ASIGNATURA:

Aplica los conceptos y leyes fundamentales del estado líquido, equilibrio iónico, termoquímica, electroquímica en la resolución de ejercicios y prácticas de laboratorio, organizando y desarrollando el razonamiento, comprendiendo y explicando los procesos que se llevan a cabo en la naturaleza.

CONTRIBUCIÓN DE LA ASIGNATURA A LA FORMACIÓN PROFESIONAL:

La Química como asignatura contribuye a complementar el conocimiento profesional en el área industrial tanto en el campo de la Biotecnología, como también en el de la Mecánica y Mecatrónica; ya que todo proceso que la industria requiere, aplica bases sólidas de la electroquímica, termoquímica y preparación de soluciones que generan productos de consumo masivo.

RESULTADO DE APRENDIZAJE DE LA CARRERA (UNIDAD DE COMPETENCIA):

Interpreta y resuelve problemas de la realidad aplicando métodos de la investigación, métodos propios de las ciencias, herramientas tecnológicas y variadas fuentes de información científica, técnica y cultural con ética profesional, trabajo en equipo y respeto a la propiedad intelectual. Demuestra pensamiento lógico, aplica concepto y leyes fundamentales de las Ciencias Básicas con orden, responsabilidad, honestidad, coherencia y pertinencia, secuencias algorítmicas, para la modelación y solución de problemas que tributen a la formación profesional con eficiencia.

OBJETIVO DE LA ASIGNATURA:

- Analizar y representar las funciones químicas con su respectivo enlace químico.
- Utilizar los conocimientos químicos básicos de la estequiometria redox, soluciones, ácidos, bases y sales, equilibrio iónico; termoquímica y electroquímica.
- Conocer como establecer valores estándar en los cambios de entalpia de las reacciones químicas y como utilizarlos para calcular los cambios de entalpía.
- Identificar y valorar los diferentes compuestos químicos que se encuentran en la naturaleza,

RESULTADO DE APRENDIZAJE DE LA ASIGNATURA: (ELEMENTO DE COMPETENCIA):

Aplica los conceptos y leyes fundamentales de las Ciencias Básicas utilizando técnicas y procedimientos creativos que permitan resolver problemas relacionados a su Carrera.

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

UNIDADES DE CONTENIDOS				
Unidad 1	Resultados de Aprendizaje de la Unidad 1			
ESTADO LIQUIDO Y SOLUCIONES	Conocer los diferentes tipos de soluciones que se pueden formar a partir de los tres estados de la materia: sólido, líquido y gaseoso, clasificar una solución como no saturada, saturada y sobresaturada en base a la cantidad de soluto presente. Aplicar las principales unidades de concentración en la resolución de problemas. Resolver problemas aplicando las propiedades de las soluciones de solutos no electrólitos.			
ESTADO LIQUIDO				
CARACTERÍSTICAS				

PROPIEDADES

SOLUCIONES

DEFINICIONES Y CLASIFICACIÓN

PROGRAMA ANALÍTICO

UNIDADES DE CONTENIDOS

SOLUBILIDAD (FACTORES QUE AFECTAN LA SOLUBILIDAD)

UNIDADES DE CONCENTRACIÓN FISICAS Y QUÍMICAS

DILUCIÓN DE SOLUCIONES

ESTEQUIOMETRÍA CON SOLUCIONES

EJERCICIOS DE APLICACIÓN

PROPIEDADES DE LAS SOLUCIONES

DESCENSO DE LA PRESIÓN DE VAPOR

EBULLOSCOPÍA

CRIOSCOPÍA

PRESIÓN OSMÓTICA

EJERCICIOS DE APLICACIÓN

Unidad 2

ACIDOS, BASES, SALES Y EQUILIBRIO IONICO

Resultados de Aprendizaje de la Unidad 2

Definir ácidos y bases según Arrhenius, Lewis y Bronsted. Estudiar las propiedades ácido-base del agua y definir la constante del producto iónico para la autoionización del agua. Conocer el pH como una medida de la acidez. Clasificar a los ácidos y las bases como fuertes o débiles, según el grado de ionización, calcular el pH de una solución de un ácido y una base débil a partir de su concentración y su constante de ionización. Estudiar los ácidos dipróticos y polipróticos. Conocer que la solubilidad de las sales en agua producen

ÁCIDOS, BASES Y SALES

DEFINICIONES Y PROPIEDADES

CLASIFICACIÓN DE ACIDOS, BASES Y SALES

EQUILIBRIO IONICO

CONSTANTE DE EQUILIBRIO

IONIZACIÓN DEL AGUA

PH Y POH

HIDRÓLISIS

EJERCICIOS DE APLICACIÓN

Resultados de Aprendizaje de la Unidad 3

Determinar el contenido calorífico de las reacciones químicas. Clasificar a las reacciones en endotérmicas y exotérmicas. Estudiar un proceso electroquímico espontáneo, las reacciones electroquímicas no espontáneas, la electrólisis, y analizar los aspectos cuantitativos de los procesos electrolíticos.

Unidad 3

TERMOQUIMICA Y ELECTROQUIMICA

TERMOQUÍMICA

UNIDADES TÉRMICAS

CALOR ESPECÍFICO Y CAPACIDAD CALORÍFICA MOLAR

CALOR LATENTE

ENTALPÍA DE FORMACIÓN

ENTALPÍA O CALOR DE REACCIÓN

ENTALPÍA DE COMBUSTIÓN

ECUACIONES TERMOQUÍMICAS

LEY DE HESS

EJERCICIOS DE APLICACIÓN

ELECTROQUÍMICA

UNIDADES ELECTRICAS

LEY DE OHM

LEYES DE FARADAY DE LA ELECTROLISIS

EJERCICIOS DE APLICACIÓN

PROGRAMA ANALÍTICO

3. PROYECCIÓN METODOLÓGICA Y ORGANIZATIVA PARA EL DESARROLLO DE LA ASIGNATURA

(PROYECCIÓN DE LOS MÉTODOS DE ENZEÑANZA - APRENDIZAJE QUE SE UTILIZARÁN)

- 1 Talleres
- 2 Clase Magistral
- 3 Estudio de Casos
- 4 Resolución de Problemas
- 5 Investigación Exploratoria
- 6 Diseño de proyectos, modelos y prototipos
- 7 Prácticas de Laboratorío

PROYECCIÓN DEL EMPLEO DE LA TIC EN LOS PROCESOS DE APRENDIZAJE

- 1 Material Multimedia
- 2 Aula Virtual
- 3 Herramientas Colaborativas (Google, drive, onedrives, otros)

4. TÉCNICAS Y PONDERACIÓN DE LA EVALUACIÓN

- En este espacio se expresarán las técnicas utilizadas en la evaluación del proceso de enseñanza aprendizaje o
 evaluación formativa y sumativa.
- Las técnicas que se recomienda usar son: Resolución de ejercicios, Investigación Bibliográfica, Lecciones oral/escrita,
 Pruebas orales/escrita, Laboratorios, Talleres, Solución de problemas, Prácticas, Exposición, Trabajo colaborativo,
 Examen parcial, Otras formas de evaluación.
- Recordar que mientras más técnicas utilicen, la evaluación será más objetiva y el desempeño del estudiante se reflejará en su rendimiento (4 o 5 técnicas).
- Para evaluar se deberá aplicar la rúbrica en cada una de las técnicas de evaluación empleadas. Se debe expresar en puntaje de la nota final sobre 20 puntos. No debe existir una diferencia mayor a dos puntos entre cada técnica de evaluación empleada.
- En la modalidad presencial existen tres parciales en la modalidad a distancia existen dos parciales, toda la planificación de periodo académico se la realiza en función del número de parciales de cada modalidad.
- La ponderación a utilizarse en la evaluación del aprendizaje del estudiante será la misma en las tres parciales.
- Para la aprobación de una asignatura se debe tener una nota final promedio de 14/20, en los tres o dos

5. BIBLIOGRAFÍA BÁSICA/ TEXTO GUÍA DE LA ASIGNATURA

Titulo	Autor	Edición	Año	Idioma	Editorial
QUIMICA LA CIENCIA CENTRAL 7ma Edición	BROWN,THEODORE L.	7	1998	ESPAÑOL	Prentice Hall
Química general	Rosenberg, Jerome L.	-	1988	spa	México : McGraw Hill Interamericana de México
Química general	McMurry, John	-	2009	spa	México : Pearson Educación, 2009
QUIMICA LA CIENCIA CENTRAL 7ma Edición	BROWN,THEODORE L.	7	1998	ESPAÑOL	Prentice Hall
PRACTICAS DE QUIMICA GENERAL	CARRILLO A, ALFONSO	-	s.f.	Español	Quito : s.e.
PROBLEMAS DE QUIMICA GENERAL	IBARZ, JOSE	-	1981	Español	Barcelona : R. Sopena, S.A.
Quimica	Seese, William S.	-	1989	español	México: Prentince Hall
QUIMICA PRINCIPIOS Y REACCIONES 4ED.	MASTERTON, W. L.	4	2003	ESPAÑOL	Thomson
QUIMICA GENERAL 2da Edición	GARZÓN,GUILLERMO	2	1986	ESPAÑOL	McGraw-Hill
QUIMICA 7ma Ed.	DAUB, WILLIAM	7	1996	ESPAÑOL	Printece Hall
Como resolver problemas de química general	Sorum,C. H	-	1983	spa	España : Ed. paraninfo, s.a
Fundamentos de química	Chang, Raymond	-	2011	spa	México : McGraw Hill
FUNDAMENTOS DE QUIMICA	CHANG, RAYMOND	-	2011	ESPAÑOL	M C G R A W - H I L L E d u c a c i ó n

PROGRAMA ANALÍTICO

6. FIRMAS DE LEGALIZACIÓN

CRISTIAN ROBERTO MONCAYO ESPIN COORDINADOR DE AREA DE CONOCIMIENTO	DIRECTOR DE CARRERA
ELSA JACQUELINE POZO J	
DIRECTOR DE DEPARTAN	MENTO