

VICERRECTORADO ACADÉMICO

Unidad de Desarrollo Educativo

1. DATOS INFORMATIVOS

CIENCIAS DE LA ENERGÍA Y INGENIERÍA AUTOMOTRIZ DISEÑO Y MECÁNICA COMP	ASIGNATURA: DISEÑO DE ELEMENTOS DE MÁQUINAS	CÓDIGO: EMEC 24051		NIVEL: SEPTIMO	CRÉDITOS: 5	
1112071111071		INGENIERÍA AUTOMOTRIZ		ÁREA DEL CONOCIMIENTO: DISEÑO Y MECÁNICA COMPUTACIONAL		

ELEMENTO DE COMPETENCIA:

Fundamenta una base teórica suficiente que le permitirá entender los procedimientos del diseño de elementos de máquinas y desarrollar la habilidad para poner en práctica dichas teorías

2. SISTEMA DE CONTENIDOS

No	UNIDADES DE CONTENIDOS	CARGA HORARIA
	UNIDAD 1 FUNDAMENTOS DEL DISEÑO MECÁNICO, TEORÍAS DE FALLA ESTÁTICA (DÚCTIL)	26
	1.1 INTRODUCCIÓN AL DISEÑO EN INGENIERÍA MECÁNICA	
	1.1.1 El proceso de diseño	
	1.1.2 El Diseño concurrente	
	1.1.3 Diseño QFD	
	1.1.4 Diseño DFA,DFM,DFE	
1	1.1.5 Diseño Funcional	
'	116 Criterios de Resistencia de Materiales	
	1.2 FALLAS POR CARGA ESTÁTICA PARA MATERIALES DÚCTILES	
	1.2.1 Resistencia estática.	
	1.2.2 Cargas estáticas y factor de seguridad.	
	1.2.3 Falla de materiales dúctiles	
	1.2.4 Teoría del esfuerzo normal máximo.	
	1.2.5 Teoría del esfuerzo cortante máximo.	
	1.2.6 Teoría de la energía de distorsión.	
	1.2.7 Falla de materiales frágiles	
	UNIDAD 2	26
	TEORÍAS DE FALLAS ESTÁTICAS (FRÁGIL), TEORÍAS DE	
	FALLA DINÁMICA Y ELEMENTOS DE SUJECIÓN	
	2.1 FALLAS RESULTANTES DE CARGA ESTÁTICA	
	(MATERIALES FRÁGILES).	
2	2.1.1 Fallas de materiales frágiles. 2.1.2 Concentración del esfuerzo.	
	2.1.3 Determinación de los factores de concentración del esfuerzo.	
	2.1.4. Gráficas de concentración del esfuerzo	
	2.1.5 Concentración del esfuerzo y cargas estáticas.	
	2.2 FALLAS POR FATIGA RESULTANTES DE CARGA VARIABLE	
	2.2.1 Fatiga en ciclos bajos.	

VICERRECTORADO ACADÉMICO

Unidad de Desarrollo Educativo

	2.2.2 Fatiga en ciclos altos.	
	2.2.3 Factores que modifican el límite de resistencia a la fatiga	
	2.2.4 Acabado de superficie.	
	2.2.5 Efectos de tamaño.	
	2.2.6 Confiabilidad.	
	2.2.7 Efectos de la temperatura.	
	2.2.8 Efectos de concentración del esfuerzo.	
	2.2.9 Efectos diversos.	
	2.2.10 Esfuerzos fluctuantes.	
	2.2.11 Resistencia a la fatiga en el caso de esfuerzos fluctuantes.	
	2.2.12 Teorías no lineales.	
	2.2.13 Factor de seguridad de Kimmelmann.	
	2.2.14 Resistencia a la fatiga en torsión.	
	2.2.15 Esfuerzos debidos a cargas combinadas.	
	2.2.17 Resistencia en la superficie.	
	2.3 DISEÑO DE TORNILLOS, SUJETADORES Y UNIONES	
	2.3.1 Normas o estándares y definiciones para roscas de tornillos.	
	2.3.2 Mecánica de los tornillos de fuerza o potencia	
	2.3.3 Sujetadores roscados	
	2.3.4 Tensión en juntas atornilladas.	
	2.3.5 Compresión en miembros atornillados	
	2.3.6 Requisitos del par de torsión	
	2.3.7 Especificaciones de resistencia.	
	2.3.7 Precarga de pernos (estática - dinámica)	
	2.3.8 Selección de la tuerca	
	2.3.9 Juntas con empaquetadura	
	2.3.10 Remaches	
	2.3.11 Espárragos	
	2.3.12 Juntas soldadas o pegadas	
	UNIDAD 3	28
	ELEMENTOS MECÁNICOS	
	3.1 RESORTES MECÁNICOS	
	3.1.1 Esfuerzos en resortes helicoidales	
	3.1.2 Deformación de resortes helicoidales.	
	3.1.3 Resortes de tensión o extensión.	
	3.1.4 Resortes de compresión.	
	3.1.5 Diseño de resortes helicoidales.	
3	3.1.6 Frecuencia crítica de resortes helicoidales.	
3	3.1.7 Cargas de fatiga.	
	3.1.8 Resortes de torsión helicoidales.	
	3.1.9 Resortes discoidales	
	3.2. COJINETES DE RODAMIENTO O ANTIFRICCIÓN	
	3.2.1 Tipos de cojinetes.	
	3.2.2 Duración o vida de los cojinetes.	
	3.2.3 Carga en cojinetes.	
	3.2.4 Selección de cojinetes de bolas y de rodillos cilíndricos.	
	3.2.5 Selección de cojinetes de rodillos cónicos	

VICERRECTORADO ACADÉMICO

Unidad de Desarrollo Educativo

3.3 ENGRANES	
3.3.1 Engranes rectos. Relación de contacto	
3.3.2 Formado de los dientes de los engranes. Trenes de engranes.	
3.3.3 Análisis de fuerzas	
3.3.4 Esfuerzos en los dientes. Efectos dinámicos.	
3.3.5 Resistencia a la fatiga. Factor de seguridad.	
3.3.6 Engranes helicoidales, cónicos y de tornillo sin fin.	
3.4 EJES DE TRANSMISIÓN	
3.4.1 Diseño estático. Diseño dinámico	
3.4.2 Flexión alternante y torsión continua.	
3.4.3 Método de Soderberg. Método de la línea de carga de	
Kimmelmann. Método gráfico básico.	
3.4.4 Método general.	
3.4.5 Método de Sines	
3.5 EMBRAGUES, FRENOS, COPLES Y VOLANTES	
3.5.1 Embragues y frenos de aro [tambor] con zapatas interiores	
3.5.2 Embragues y frenos de aro [tambor] con zapatas exteriores.	
3.5.3 Embragues y frenos de cinta o banda.	
3.6 ELEMENTOS FLEXIBLES	
3.6.1 Bandas o correas	
3.6.2 Transmisiones de bandas planas	
3.6.3 Transmisión de cadena de rodillos	
3.6.4 Transmisiones de cable	
3.6.5 Cables metálicos	
TOTAL	80

3. BIBLIOGRAFÍA RECOMENDADA

	TITULO	AUTOR	EDICIÓN	AÑO	IDIOMA	EDITORIAL
1.	Mecánica Aplicada al diseño de los elementos de máquinas temas básicos de resistencia de materiales aplicables al diseño de árboles y ejes	AMÉ, Ricardo Mario	PRIMERA	2011	ESPAÑOL	Nobuko E-9781 449279721
2.	Mecánica Computacional, fusión de arte ciencia y técnica	CISILINO, Adrián Pablo	PRIMERA	2010	ESPAÑOL	ANI E-844348258
3.	Diseño en ingeniería mecánica	EDWARD SHIGLEY Joseph	OCTAVA	2012	ESPAÑOL	Mc Graw Hill